Learn More
BACKGROUND It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs) isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where(More)
Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing's syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which(More)
Tumours recruit mesenchymal stem cells to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that CXCL16, a ligand for CXCR6, facilitates mesenchymal stem cell or very small embryonic-like cells recruitment into(More)
High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted(More)
Disseminated tumor cells (DTCs) are believed to lie dormant in the marrow before they can be activated to form metastases. How DTCs become dormant in the marrow and how dormant DTCs escape dormancy remains unclear. Recent work has shown that prostate cancer (PCa) cell lines express the growth-arrest specific 6 (GAS6) receptors Axl, Tyro3, and Mer, and(More)
Bone marrow is a heterogeneous organ containing diverse cell types, and it is a preferred metastatic site for several solid tumors such as breast and prostate cancer. Recently, it has been shown that bone metastatic cancer cells interact with the bone marrow microenvironment to survive and grow, and thus this microenvironment is referred to as the(More)
TET2 (Ten Eleven Translocation 2) is a dioxygenase that converts methylcytosine (mC) to hydroxymethylcytosine (hmC). TET2 loss-of-function mutations are highly frequent in subtypes of T-cell lymphoma that harbor follicular helper T (Tfh)-cell-like features, such as angioimmunoblastic T-cell lymphoma (30-83%) or peripheral T-cell lymphoma, not otherwise(More)
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation(More)
Angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are subtypes of T-cell lymphoma. Due to low tumor cell content and substantial reactive cell infiltration, these lymphomas are sometimes mistaken for other types of lymphomas or even non-neoplastic diseases. In addition, a significant proportion of(More)
Dietary bioflavonoids are secondary metabolites of plants that are known to have a variety of bio-effects, including anti-cancer activity. In this study, we examined the effects of flavonoids on the growth of human leukemia cells and found that certain flavonoids induce apoptosis in a variety of human leukemia cells. The apoptosis induced by bioflavonoids(More)