Yusuke Izutani

Learn More
The physiological phenomenon that the antisweet taste effect of gymnemic acid (GA) is diminished by application of gamma-cyclodextrin (gamma-CD) to the mouth was evaluated at the molecular level using isothermal titration calorimetry, NMR and dynamic light scattering. These analyses showed that GA specifically binds to gamma-CD. Thermodynamic analysis using(More)
In a previous study, we found interaction of gymnemic acid (GA) with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis. We now examined interaction of GA with glycolytic and related enzymes. We found that (1) GA induced a band smearing of glycerol-3-phosphate dehydrogenase (G3PDH) as well as that of GAPDH in SDS-PAGE, (2) GA(More)
The structural properties of glycyrrhizic acid, a sweet-tasting constituent of Glycyrrhiza glabra, and its interaction with cyclodextrins were analyzed using dynamic light scattering, isothermal titration calorimetry, and NMR. The dynamic light scattering and NMR studies showed that glycyrrhizic acid forms a water-soluble aggregate that disperses upon the(More)
Gymnemic acids (GA) inhibited rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Binding of GA to GAPDH was observed by surface plasmon resonance measurement. Incubation of GAPDH with GA induced a smearing of the GAPDH band in SDS-PAGE. The GA-induced smearing was diminished by prior incubation of GA with gamma-cyclodextrin or by GA(More)
  • 1