Learn More
The glutamate transporter GLAST is localized on the cell membrane of mature astrocytes and is also expressed in the ventricular zone of developing brains. To characterize and follow the GLAST-expressing cells during development, we examined the mouse spinal cord by in situ hybridization and immunohistochemistry. At embryonic day (E) 11 and E13, cells(More)
The drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is thought to be involved in the metabolism of nearly 50% of all the drugs currently prescribed. Alteration in the activity or expression of this enzyme seems to be a key predictor of drug responsiveness and toxicity. Currently available studies indicate that the ligand-activated nuclear receptors(More)
The NMDA (N-methyl-D-aspartate) receptor channel is important for synaptic plasticity, which is thought to underlie learning, memory and development. The NMDA receptor channel is formed by at least two members of the glutamate receptor (GluR) channel subunit families, the GluR epsilon (NR2) and GluR zeta (NR1) subunit families. The four epsilon subunits are(More)
Hippocampal synapses express two distinct forms of the long-term potentiation (LTP), i.e. NMDA receptor-dependent and -independent LTPs. To understand its molecular-anatomical basis, we produced affinity-purified antibodies against the GluRepsilon1 (NR2A), GluRepsilon2 (NR2B), and GluRzeta1 (NR1) subunits of the N-methyl-D-aspartate (NMDA) receptor channel,(More)
To study the function of GLAST, a glutamate transporter highly expressed in the cerebellar Bergmann astrocytes, the mouse GLAST gene was inactivated. GLAST-deficient mice developed normally and could manage simple coordinated tasks, such as staying on a stationary or a slowly rotating rod, but failed more challenging task such as staying on a quickly(More)
In situ hybridization analyses have revealed drastic changes in expression and distribution of five subunit mRNAs of the mouse NMDA receptor channel during brain development. The epsilon 1 subunit mRNA is expressed postnatally and widely in the brain. On the other hand, the epsilon 2 subunit mRNA is found throughout the entire embryonic brain, but its(More)
Single-unit discharges were recorded in the medial superior temporal area (MST) of five behaving monkeys. Brief (230-ms) horizontal disparity steps were applied to large correlated or anticorrelated random-dot patterns (in which the dots had the same or opposite contrast, respectively, at the two eyes), eliciting vergence eye movements at short latencies(More)
Climbing fiber (CF) synapse formation onto cerebellar Purkinje cells (PCs) is critically dependent on the synaptogenesis from parallel fibers (PFs), the other input to PCs. Previous studies revealed that deletion of the glutamate receptor delta2 subunit (GluRdelta2) gene results in persistent multiple CF innervation of PCs with impaired PF synaptogenesis,(More)
The primary structure of a putative subunit of the mouse glutamate receptor channel, designated as the delta 2 subunit, has been deduced by cloning and sequencing the cDNA. The delta 2 subunit has four putative transmembrane segments characteristic for neurotransmitter-gated ion channels, and shares 56% amino acid sequence identity with the delta 1 subunit(More)
Insects can be grouped into mainly two categories, holometabolous and hemimetabolous, according to the extent of their morphological change during metamorphosis. The three thoracic legs, for example, are known to develop through two overtly different pathways: holometabolous insects make legs through their imaginal discs, while hemimetabolous legs develop(More)