Learn More
Graphics processing units (GPUs) embrace many-core compute devices where massively parallel compute threads are offloaded from CPUs. This heterogeneous nature of GPU computing raises non-trivial data transfer problems especially against latency-critical real-time systems. However even the basic characteristics of data transfers associated with GPU computing(More)
Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella(More)
PURPOSE In the authors' proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. METHODS The authors prepared four types of patient-specific aperture systems equipped with an energy(More)
PURPOSE A proton beam therapy (PBT) system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT) were compared with(More)
Cyber-physical systems (CPS) must perform complex algorithms at very high speed to monitor and control complex real-world phenomena. GPU, with a large number of cores and extremely high parallel processing, promises better computation if the data parallelism often found in real-world scenarios of CPS could be exploited. Nevertheless, its performance is(More)
This paper discusses a vibration suppression control method for a space robot with a rigid manipulator and flexible appendage. A suitable dynamic model that considers the coupling between the manipulator and flexible appendage was developed for the controller to accomplish the vibration suppression control of the flexible appendage. The flexible appendage(More)
PURPOSE The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. METHODS The accuracy of calculations was important for treatment planning software (TPS)(More)
PURPOSE In spot-scanning proton therapy, the interplay effect between tumor motion and beam delivery leads to deterioration of the dose distribution. To mitigate the impact of tumor motion, gating in combination with repainting is one of the most promising methods that have been proposed. This study focused on a synchrotron-based spot-scanning proton(More)
This paper addresses a dynamic model and a control method of a space robot with a rigid manipulator and a flexible appendage. The control method has been developed for performing multiple tasks: end-point motion control and vibration suppression control of a flexible appendage. A simple dynamic model that considers coupling between the manipulator and the(More)
Graphics processing units (GPUs) are increasingly used for high-performance computing. Programming frameworks for general-purpose computing on GPUs (GPGPU), such as CUDA and OpenCL, are also maturing. Driving this trend is the recent proliferation of mobile devices such as smartphones and wearable computers. These devices are increasingly incorporating(More)