Learn More
In this paper, we deal with the robust H ∞ filtering problem for a class of uncertain nonlinear time-delay stochastic systems. The system under consideration contains parameter uncertainties, Itô-type stochastic disturbances, time-varying delays, as well as sector-bounded nonlinearities. We aim at designing a full-order filter such that, for all admissible(More)
This paper is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more(More)
In this paper, the synchronization problem is studied for an array of N identical delayed neutral-type neural networks with Markovian jumping parameters. The coupled networks involve both the mode-dependent discrete-time delays and the mode-dependent unbounded distributed time delays. All the network parameters including the coupling matrix are also(More)
In this paper, a synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays. The complex networks addressed which include neural and social networks as special cases are quite general. Rather than the commonly used Lipschitz-type function, a(More)
In this paper, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and(More)
This paper is concerned with the state estimation problem for a class of Markovian neural networks with discrete and distributed time-delays. The neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements, such(More)