Learn More
The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general(More)
To develop physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and drug-drug interactions (DDI) of pravastatin, using the in vitro transport parameters. In vitro hepatic sinusoidal active uptake, passive diffusion and canalicular efflux intrinsic clearance values were determined using sandwich-culture human hepatocytes (SCHH)(More)
Metabolic stability of drug candidates are often determined in both liver microsome and hepatocyte assays. Comparison of intrinsic clearance values between the two assays provides additional information to guide drug design. Intrinsic clearance values from human liver microsomes and hepatocytes were compared for a set of commercial drugs with known(More)
Breast cancer resistance protein (BCRP), an efflux transporter expressed at the bile canalicular membrane, is responsible for the biliary clearance of many drugs. Data on the interindividual variability of hepatic BCRP expression are needed for in vitro to in vivo extrapolation of the biliary clearance of a BCRP substrate drug. Therefore, we measured the(More)
Abbreviations: ABC: Ammonium Bicarbonate; AQUA: Absolute Quantification; CV: Coefficient of Variation; DOC: Deoxycholate; DTT: Dithiothreitol; Gdn: Guanidine; IS: Internal Standard; MRM: Multiple Reaction Monitoring; OATP: Organic Anion-Transporting Polypeptide; PMAX: ProteaseMAXTM Surfactant; S.E.M: Standard Error of the Mean; SIL: Stable Isotope Label;(More)
As sandwich cultured (SC) hepatocytes can repolarize to form bile canalicular networks, allowing active excretion of compounds in a vectorial manner, the model has been widely used for assessing the transporter related complexity of ADME/tox issues. A lack of quantitative information on transporter expression during cell culture has made in vitro to in vivo(More)
We previously reported that hepatobiliary transporter multidrug resistance-associated protein (MRP2/Mrp2) is considered to be the major cause of the interspecies differences detected by efflux of fluorescent substrates in isolated hepatocytes. In the present study, the interspecies differences of MRP2/Mrp2 were first evaluated by quantitative real-time(More)
Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp)(More)
With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that(More)
Since the substrate specificities of OATP1B1, 1B3, and 2B1 are broad and overlapping, the contribution of each isoform to the overall hepatic uptake is of concern when assessing transporter-mediated drug-drug interactions (DDIs) or genetic polymorphism impact in the clinic. Herein, we quantitatively measured OATP proteins in cryopreserved hepatocytes,(More)