Learn More
Parkinson's disease (PD) and dementia with Lewy bodies are common disorders of the aging population and characterized by the progressive accumulation of α-synuclein (α-syn) in the central nervous system. Aggregation of α-syn into oligomers with a ring-like appearance has been proposed to play a role in toxicity. However, the molecular mechanisms and the(More)
Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation(More)
BACKGROUND Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) and Parkinson's disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid beta protein (Abeta) oligomers(More)
Misfolding and oligomerization of unstructured proteins is involved in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease, Huntington's disease, and other neurodegenerative disorders. Elucidation of possible conformations of these proteins and their interactions with the membrane is necessary to understand the molecular mechanisms of(More)
Parkinson's disease (PD) is associated with the formation of toxic α-synuclein oligomers that can penetrate the cell membrane. Familial forms of PD are caused by the point mutations A53T, A30P, E46K, and H50Q. Artificial point mutations E35K and E57K also increase oligomerization and pore formation. We generated structural conformations of α-synuclein and(More)
Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells that also mediates uptake of the cancer chemotherapeutic agent cisplatin. A low resolution structure of hCTR1 determined by cryoelectron microscopy was recently published. Several protein structure simulation techniques were used to create an all-atom(More)
Parathyroid hormone-related protein (PTHrP) has a number of cancer-related actions. While best known for causing hypercalcemia of malignancy, it also has effects on cancer cell growth, apoptosis, and angiogenesis. Studying the actions of PTHrP in human cancer is complicated because there are three isoforms and many derived peptides. Several peptides are(More)
  • 1