Learn More
Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with(More)
We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial(More)
The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto(More)
Wiring economy has successfully explained the individual placement of neurons in simple nervous systems like that of Caenorhabditis elegans [1-3] and the locations of coarser structures like cortical areas in complex vertebrate brains [4]. However, it remains unclear whether wiring economy can explain the placement of individual neurons in brains larger(More)
We analyze the scaling and cost-performance characteristics of current and projected connectomics approaches, with reference to the potential implications of recent advances in diverse contributing fields. This analysis suggests potential cost-effective strategies for dense connectivity mapping at the scale of whole mammalian brains.
Objective We present an approach for detecting mitochondria in electron microscopy images of brain tissue and demonstrate it on the rat neuropil. This would enable the study of statistics of mitochondria and their location relative to other structures such as cell boundaries, vesicles and synapses. Neural tissue from the Lateral part of the rat's brain was(More)
We propose a neural connectomics strategy called Fluorescent In-Situ Sequencing of Barcoded Individual Neuronal Connections (FISSEQ-BOINC), leveraging fluorescent in situ nucleic acid sequencing in fixed tissue (FISSEQ) [1, 2]. FISSEQ-BOINC exhibits different properties from BOINC [3, 4], which relies on bulk nucleic acid sequencing. FISSEQ-BOINC could(More)
Monte Carlo approaches have recently been proposed to quantify connectivity in neu-ronal networks. The key problem is to sample from the conditional distribution of a single neuronal spike train, given the activity of the other neurons in the network. Dependencies between neurons are usually relatively weak; however, temporal dependencies within the spike(More)
We propose a new method for mapping neural connectivity optically, by utilizing Cre/Lox system Brainbow to tag synapses of different neurons with random mixtures of different fluorophores, such as GFP, YFP, etc., and then detecting patterns of fluorophores at different synapses using light microscopy (LM). Such patterns will immediately report the pre- and(More)
Physical organization of the nervous system is a topic of perpetual interest in neuroscience. Despite significant achievements here in the past, many details of the nervous system organization and its role in animals' behavior remain obscure, while the problem of complete connectivity reconstructions has recently re-emerged as one of the major directions in(More)