Learn More
Much of the genome is transcribed into long noncoding RNAs (ncRNAs). Previous data suggested that bithoraxoid (bxd) ncRNAs of the Drosophila bithorax complex (BX-C) prevent silencing of Ultrabithorax (Ubx) and recruit activating proteins of the trithorax group (trxG) to their maintenance elements (MEs). We found that, surprisingly, Ubx and several bxd(More)
Propagation of gene-expression patterns through the cell cycle requires the existence of an epigenetic mark that re-establishes the chromatin architecture of the parental cell in the daughter cells. We devised assays to determine which potential epigenetic marks associate with epigenetic maintenance elements during DNA replication in Drosophila embryos.(More)
In Drosophila, two classes of genes, the trithorax group and the Polycomb group, are required in concert to maintain gene expression by regulating chromatin structure. We have identified Trithorax protein (TRX) binding elements within the bithorax complex and have found that within the bxd/pbx regulatory region these elements are functionally relevant for(More)
Steroid hormones fulfil important functions in animal development. In Drosophila, ecdysone triggers moulting and metamorphosis through its effects on gene expression. Ecdysone works by binding to a nuclear receptor, EcR, which heterodimerizes with the retinoid X receptor homologue Ultraspiracle. Both partners are required for binding to ligand or DNA. Like(More)
The Drosophila melanogaster trithorax gene encodes several large RNAs which are expressed in complex patterns in the embryo. The D. virilis trithorax gene was isolated and sequenced. It produces a similar to D. melanogaster set of transcripts, and it encodes a protein that shows sequence similarity in several domains which are also conserved in human(More)
Trithorax (Trx) is a member of the trithorax group (trxG) of epigenetic regulators, which is required to maintain active states of Hox gene expression during development. We have purified from Drosophila embryos a trithorax acetylation complex (TAC1) that contains Trx, dCBP, and Sbf1. Like CBP, TAC1 acetylates core histones in nucleosomes, suggesting that(More)
particular regions of genes, much like sense transcripts (Fig. 1 and figs. S2 and S8). This distribution is consistent with a model wherein many antisense transcripts initiate and terminate near the terminators and promoters, respectively, of the sense transcripts. Some of the apparent antisense transcripts from a gene on the plus strand could actually be(More)
The products of the trithorax and Polycomb groups genes maintain the activity and silence, respectively, of many developmental genes including genes of the homeotic complexes. This transcriptional regulation is likely to involve modification of chromatin structure. Here, we report the cloning and characterization of a new gene, trithorax-related (trr),(More)
  • 1