Yurii S. Moroz

Learn More
We demonstrated that β-(1-azulenyl)-L-alanine, a fluorescent pseudoisosteric analog of tryptophan, exhibits weak environmental dependence and thus allows for using weak intrinsic quenchers, such as methionines, to monitor protein-protein interactions while not perturbing them.
Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test(More)
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence(More)
Despite the progress in creating novel catalysts for nonnatural reactions and reengineering existing enzymes to adopt new properties, the problem of creating a catalyst for a particular chemical transformation is far from solved. Current successful approaches to develop enzymes for nonnatural reactions combine sophisticated computational algorithms with(More)
We recently reported that a computationally designed catalyst nicknamed AlleyCat facilitates C–H proton abstraction in Kemp elimination at neutral pH in a selective and calcium-dependent fashion by a factor of approximately 100,000 (Korendovych et al. in Proc. Natl. Acad. Sci. USA 108:6823, 2011). Kemp elimination produced a colored product that can be(More)
Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically(More)
β-(1-Azulenyl)-L-alanine (AzAla) can be incorporated into the influenza A virus M2 proton channel. AzAla's sensitivity to the protonation state of the nearby histidines and the lack of environmental fluorescence dependence allow for direct and straightforward determination of histidine pKa values in ion channels.
Design of a new catalytic function in proteins, apart from its inherent practical value, is important for fundamental understanding of enzymatic activity. Using a computationally inexpensive, minimalistic approach that focuses on introducing a single highly reactive residue into proteins to achieve catalysis we converted a 74-residue-long C-terminal domain(More)
One-pot parallel synthesis of unsymmetrical aliphatic ureas was achieved with bis(2,2,2-trifluoroethyl) carbonate. The procedure worked well for both the monosubstituted and functionalized alkyl amines and required no special conditions (temperature control, order, or rate of addition). A library of 96 diverse ureas was easily synthesized.
Two types of aliphatic sulfonyl halides (Cl versus F) were compared in parallel synthesis of sulfonamides derived from aliphatic amines. Aliphatic sulfonyl fluorides showed good results with amines bearing an additional functionality, while the corresponding chlorides failed. Both sulfonyl halides were effective in the reactions with amines having an easily(More)