#### Filter Results:

- Full text PDF available (72)

#### Publication Year

1991

2017

- This year (6)
- Last 5 years (35)
- Last 10 years (61)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Yurii Nesterov
- Math. Program.
- 2005

In this paper we propose a new approach for constructing efficient schemes for non-smooth convex optimization. It is based on a special smoothing technique, which can be applied to functions with explicit max-structure. Our approach can be considered as an alternative to black-box minimization. From the viewpoint of efficiency estimates, we manage to… (More)

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both in convex and nonconvex cases, can be solved… (More)

- Yurii Nesterov, Michael J. Todd
- Math. Oper. Res.
- 1997

This paper provides a theoretical foundation for efficient interior-point algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are self-scaled. For such problems we devise long-step and symmetric primal-dual methods. Because of the special properties of these cones and barriers, our algorithms can take… (More)

- Yurii Nesterov
- SIAM Journal on Optimization
- 2012

In this paper we propose new methods for solving huge-scale optimization problems. For problems of this size, even the simplest full-dimensional vector operations are very expensive. Hence, we propose to apply an optimization technique based on random partial update of decision variables. For these methods, we prove the global estimates for the rate of… (More)

- Yurii Nesterov, Michael J. Todd
- SIAM Journal on Optimization
- 1998

In this paper we continue the development of a theoretical foundation for efficient primal-dual interior-point algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are self-scaled (see [NT97]). The class of problems under consideration includes linear programming, semidefinite programming and convex… (More)

- Yurii Nesterov
- Math. Program.
- 2013

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two terms: one is smooth and given by a black-box oracle, and another is a simple general convex function with known structure. Despite the absence of good properties of the sum, such problems, both in convex and nonconvex cases, can… (More)

- Yurii Nesterov
- Math. Program.
- 2009

In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods… (More)

- Yurii Nesterov
- SIAM Journal on Optimization
- 2005

In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of convergence of order O( 1 k ), where k is the iteration… (More)

- Michel Journée, Yurii Nesterov, Peter Richtárik, Rodolphe Sepulchre
- Journal of Machine Learning Research
- 2010

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve… (More)

- Yurii Nesterov, Boris T. Polyak
- Math. Program.
- 2006

In this paper, we provide theoretical analysis for a cubic regularization of Newton method as applied to unconstrained minimization problem. For this scheme, we prove general local convergence results. However, the main contribution of the paper is related to global worst-case complexity bounds for different problem classes including some nonconvex cases.… (More)