Yurii Burman

  • Citations Per Year
Learn More
Generalizing the classical matrix-tree theorem we provide a formula counting subgraphs of a given graph with a fixed 2-core. We use this generalization to obtain an analog of the matrix-tree theorem for the root system Dn (the classical theorem corresponds to the An-case). Several byproducts of the developed technique, such as a new formula for a(More)
The article contains a generalization of the classical Whitney formula for the number of double points of a plane curve. This formula is split into a series of equalities, and also extended to curves on a torus, to non-pointed curves, and to wave fronts. All the theorems are given geometric proofs employing logarithmic Gauss-type maps from suitable(More)
Fixing an arbitrary point p ∈ CP and a triple (g, d, `) of nonnegative integers satisfying the inequality g ≤ (d+l−1 2 ) − (l 2 ) , we associate a natural Hurwitz number to the (open) Severi-type varietyWg,d,` consisting of all reduced irreducibke plane curves of degree d + l with genus g and having an ordinary singularity of order l at p (the remaining(More)
We introduce a new class of admissible pairs of triangular sequences and prove a bijection between the set of admissible pairs of triangular sequences of length n and the set of parking functions of length n. For all u and v = 0, 1, 2, 3 and all n ≤ 7 we describe in terms of admissible pairs the dimensions of the bi-graded components hu,v of diagonal(More)
  • 1