Learn More
GPER/GPR30 is a seven-transmembrane G protein-coupled estrogen receptor that regulates many aspects of mammalian biology and physiology. We have previously described both a GPER-selective agonist G-1 and antagonist G15 based on a tetrahydro-3H-cyclopenta[c]quinoline scaffold. The antagonist lacks an ethanone moiety that likely forms important hydrogen bonds(More)
CHIP is a U-box-type ubiquitin ligase that induces ubiquitylation and degradation of its substrates, which include several oncogenic proteins. The relationship between CHIP and tumour progression, however, has not been elucidated. Here, we show that CHIP suppresses tumour progression in human breast cancer by inhibiting oncogenic pathways. CHIP levels were(More)
BACKGROUND Malnutrition is a prevalent complication in patients on maintenance hemodialysis. Nutritional screening tools may be useful to identify those patients at nutritional risk from among hundreds of hemodialysis patients in a large facility. OBJECTIVE We tested several simplified nutritional screening tools on hemodialysis patients to validate the(More)
Aromatase is a key enzyme in intratumoral estrogen production required for the production of estrogens through the conversion of serum androgens in postmenopausal breast cancer patients. There have been, however, controversies regarding the intratumoral localization of aromatase in human breast carcinoma tissues. Therefore, we have first examined the(More)
Estrogen and its receptor play important roles in genesis and malignant progression of estrogen-dependent cancers, together with various growth factors. Functional cross-talk between estrogen-signaling and growth factor-mediated signaling pathways has been reported. Firstly, we show an example of the cross-talk that may alter the effect of antagonist on the(More)
In postmenopausal breast cancers, locally produced estrogen by adipose stromal cells causes the progression of tumor growth. Although aromatase, a key enzyme of estrogen synthesis, is highly expressed in the adipose stromal cells, and aromatase inhibitors show greater efficacy in postmenopausal breast cancers, the mechanism of increasing aromatase activity(More)
Estrogen plays an essential role in growth and progression of human breast cancer. Particularly, local estrogen biosynthesis must be important for etiology of this disease. Since estrogen signaling is also activated by the growth factor-mediating phosphorylation signal, breast cancer strongly depends upon local cancer microenvironment. Then, to analyze the(More)
Aromatase inhibitors (AI) are commonly used to treat postmenopausal estrogen-receptor (ER)-positive breast carcinoma. However, resistance to AI is sometimes acquired, and the molecular mechanisms underlying such resistance are largely unclear. Recent studies suggest that AI treatment increases androgen activity during estrogen deprivation in breast(More)
The acquisition of estrogen-deprivation resistance and estrogen receptor (ER) signal-independence in ER-positive breast cancer is one of the crucial steps in advancing the aggressiveness of breast cancer; however, this has not yet been elucidated in detail. To address this issue, we established several estrogen-deprivation-resistant (EDR) breast cancer cell(More)
The relationship between tobacco smoke and breast cancer incidence has been studied for many years, but the effect of smoking on hormonal therapy has not been previously reported. We investigated the effect of smoking on hormonal therapy by performing in vitro experiments. We first prepared tobacco smoke condensate (TSC) and examined its effect on estrogen(More)