Yuri P. Danilov

Learn More
The human postural coordination mechanism is an example of a complex closed-loop control system based on multisensory integration [9,10,13,14]. In models of this process, sensory data from vestibular, visual, tactile and proprioceptive systems are integrated as linearly additive inputs that drive multiple sensory-motor loops to provide effective(More)
Brain Computer Interface (BCI) technology is one of the most rapidly developing areas of modern science; it has created numerous significant crossroads between Neuroscience and Computer Science. The goal of BCI technology is to provide a direct link between the human brain and a computerized environment. The objective of recent BCI approaches and(More)
Vestibular dysfunction of either central or peripheral origin can significantly affect balance, posture, and gait. We conducted a pilot study to test the effectiveness of training with the BrainPort balance device in subjects with a balance dysfunction due to peripheral or central vestibular loss. The BrainPort balance device transmits information about the(More)
The present study evaluated the effectiveness of electrotactile tongue biofeedback (BrainPort((R))) as a sensory substitute for the vestibular apparatus in patients with bilateral vestibular loss (BVL) who did not have a good response to conventional vestibular rehabilitation (VR). Seven patients with BVL were trained to use the device. Stimulation on the(More)
Patients with bilateral vestibular loss (BVL) of both central and peripheral origin experience multiple problems with balance and posture control, movement, and abnormal gait.Wicab, Inc. has developed the BrainPort balance device to transmit head position/orientation information normally provided by the vestibular system to the brain through a substitute(More)
The brain is capable of major reorganization even many years after an injury, with appropriate rehabilitation. The highly plastic brain responds best when the therapy is motivating and has a benefit that is recognized by the patient. The major objective of this study was to estimate feasibility and efficacy of an electro-tactile vestibular substitution(More)
High-resolution functional magnetic resonance imaging (fMRI) can be used to precisely identify blood oxygen level dependent (BOLD) activation of small structures within the brainstem not accessible with standard fMRI. A previous study identified a region within the pons exhibiting sustained neuromodulation due to electrical tongue stimulation, but was(More)
This pilot study aimed to show that information-free stimulation of the tongue can improve behavioral measures and induce sustained neuromodulation of the balance-processing network in individuals with balance dysfunction. Twelve balance-impaired subjects received one week of cranial nerve non-invasive neuromodulation (CN-NINM). Before and after the week of(More)
Multivariate analysis of functional magnetic resonance imaging (fMRI) data allows investigations into network behavior beyond simple activations of individual regions. We apply group independent component analysis to fMRI data collected in a previous study looking at the sustained neuromodulatory effects of electrical tongue stimulation in balance-impaired(More)
This study sought to examine the effect of targeted physical therapy with and without cranial nerve non-invasive neuromodulation (CN-NINM), on the walking ability of people with MS who exhibited a dysfunctional gait. We hypothesized that subjects who received electrical stimulation would have greater improvement than those who had a control device after a(More)