Learn More
Activation of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels is critical in myocardial protection induced by preconditioning with volatile anesthetics or brief periods of ischemia. In this study, we characterized rat mitoK(ATP) channels reconstituted in lipid bilayers and examined their direct regulation by isoflurane. Mitochondria and the inner(More)
BACKGROUND Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the(More)
BACKGROUND Activation of the mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) has been proposed as a critical step in myocardial protection by isoflurane-induced preconditioning in humans and animals. Recent evidence suggests that reactive oxygen species (ROS) may mediate isoflurane-mediated myocardial protection. In this study,(More)
UNLABELLED We examined the direct myocardial depressant effects of diazepam and midazolam and determined whether a benzodiazepine receptor antagonist, flumazenil, or an L-type Ca2+ channel agonist, Bay K 8644, affects the myocardial depression induced by diazepam and midazolam in cultured rat ventricular myocytes. Ventricular myocytes of neonatal rats were(More)
UNLABELLED Isoproterenol is often required to treat acute left ventricular dysfunction during separation from cardiopulmonary bypass for cardiac surgery. We hypothesized that heart rate and intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis may be important factors when isoproterenol improves the cardiac function during hypothermia. Accordingly, we(More)
UNLABELLED The precise mechanism of isoflurane and mitochondrial adenosine triphosphate-sensitive potassium channel (mitoK(ATP)) interaction is still unclear, although the mitoK(ATP) is involved in isoflurane-induced preconditioning. We examined the role of various intracellular signaling systems in mitoK(ATP) activation with isoflurane. Mitochondrial(More)
UNLABELLED We investigated whether morphine alters intracellular Ca(2+) concentration ([Ca(2+)](i)), left ventricular pressure (LVP), and myofilament Ca(2+) sensitivity under physiologic conditions in intact guinea pig beating hearts and whether delta(1), delta(2), and kappa opioid stimulations are related to the direct cardiac effects of morphine.(More)
Continuous thoracic epidural anesthesia (T4/5) using 4-5 ml.h-1 of 1.5% lidocaine with 1:200,000 epinephrine and inhaled anesthesia using nitrous oxide, oxygen and sevoflurane were performed in two patients, (40 and 22 yr-old females) with myasthenia gravis. This combined anesthetic technique provided muscle relaxation for endotracheal intubation and(More)
Activation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) and its regulation by PKC are critical events in preconditioning induced by ischemia or pharmaceutical agents in animals and humans. The properties of the human cardiac mitoKATP channel are unknown. Furthermore, there is no evidence that cytosolic PKC can directly regulate the mitoKATP(More)