Yuri N. Osetsky

Learn More
Density functional theory calculations of He defect properties in iron have shown an unexpected influence of magnetism arising from the defect's electronic structure. In contrast with previous work that neglected such effects, the results indicate that the tetrahedral position is energetically more favorable for the He interstitial than the octahedral site.(More)
The strain-rate response of flow stress in a plastically deforming crystal is formulated through a stress-sensitive dislocation mobility model that can be evaluated by atomistic simulation. For the flow stress of a model crystal of bcc Fe containing a 1/2[111] screw dislocation, this approach describes naturally a non-Arrhenius upturn at high strain rate,(More)
The fundamentals of the framework and the details of each component of the self-evolving atomistic kinetic Monte Carlo (SEAKMC) are presented. The strength of this new technique is the ability to simulate dynamic processes with atomistic fidelity that is comparable to molecular dynamics (MD) but on a much longer time scale. The observation that the dimer(More)
Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/2<111> screw dislocations in binary tungsten-transition metal alloys (W(1-x)TM(x)) were investigated using density functional theory calculations. The periodic quadrupole approach was(More)
Oxide-metal systems are important in many practical applications, and they are undergoing extensive study using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which is limited to ~10(2) atoms. Multi-scale approaches, e.g. DFT + Monte Carlo, are often used to model oxide metal systems at the(More)
  • 1