Learn More
A synergistic algorithm for producing global leaf area index and fraction of absorbed photosynthetically active radiation fields from canopy reflectance data measured by MODIS (moderate resolution imaging spectroradiometer) and MISR (multiangle imaging spectroradiometer) instruments aboard the EOS-AM 1 platform is described here. The proposed algorithm is(More)
An algorithm based on the physics of radiative transfer in vegetation canopies for the retrieval of vegetation green leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) from surface reflectances was developed and implemented for operational processing prior to the launch of the moderate resolution imaging(More)
The multiangle imaging spectroradiometer (MISR) instrument is designed to provide global imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. This paper describes an algorithm for the retrieval of leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from atmospherically(More)
The first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is planned for launch by NASA in 1998. This instrument will provide a new and improved capability for terrestrial satellite remote sensing aimed at meeting the needs of global change research. The MODIS standard products will provide new and improved tools for moderate resolution(More)
Estimation of canopy biophysical variables from remote sensing data was investigated using radiative transfer model inversion. Measurement and model uncertainties make the inverse problem ill posed, inducing difficulties and inaccuracies in the search for the solution. This study focuses on the use of prior information to reduce the uncertainties associated(More)
A prototype product suite, containing the Terra 8-day, Aqua 8-day, Terra–Aqua combined 8-and 4-day products, was generated as part of testing for the next version (Collection 5) of the MODerate resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products. These products were analyzed for consistency between Terra and Aqua retrievals over the(More)
This Algorithm Theoretical Basis Document (ATBD) describes the algorithm to produce global Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) absorbed by vegetation from atmospherically corrected surface reflectances. The MOD15 LAI and FPAR products are 1 km at launch products provided on a daily and 8 days basis. The algorithm(More)
[1] This study investigates the performances of four major global Leaf Area Index (LAI) products at 1/11.2° spatial sampling and a monthly time step: ECOCLIMAP climatology, GLOBCARBON (from SPOT/VEGETATION and ATSR/AATSR), CYCLOPES (from SPOT/VEGETATION) and MODIS Collection 4 (main algorithm, from MODIS/TERRA). These products were intercompared during the(More)
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set includes the canopy interceptance, the recollision and the escape probabilities. These(More)