Learn More
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned(More)
The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative(More)
PSI-BLAST is an iterative program to search a database for proteins with distant similarity to a query sequence. We investigated over a dozen modifications to the methods used in PSI-BLAST, with the goal of improving accuracy in finding true positive matches. To evaluate performance we used a set of 103 queries for which the true positives in yeast had been(More)
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer(More)
Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes,(More)
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes.(More)
The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by(More)
Gene duplications have a major role in the evolution of new biological functions. Theoretical studies often assume that a duplication per se is selectively neutral and that, following a duplication, one of the gene copies is freed from purifying (stabilizing) selection, which creates the potential for evolution of a new function. In search of systematic(More)
All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes(More)
The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach(More)