Yuri E. Nesmelov

Learn More
We have used chemical synthesis and electron paramagnetic resonance to probe the structural dynamics of phospholamban (PLB) in lipid bilayers. Derivatives of monomeric PLB were synthesized, each of which contained a single spin-labeled 2,2,6,6,-Tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid amino acid, with the nitroxide-containing ring covalently(More)
The product of p53-induced gene 1 is a member of the galectin family, i.e., galectin-7 (Gal-7). To move beyond structural data by X-ray diffraction, we initiated the study of the lectin by nuclear magnetic resonance (NMR) and circular dichroism spectroscopies, and molecular dynamics (MD) simulations. In concert, our results indicate that lactose binding to(More)
Spin-labeling and multifrequency EPR spectroscopy were used to probe the dynamic local structure of skeletal myosin in the region of force generation. Subfragment 1 (S1) of rabbit skeletal myosin was labeled with an iodoacetamide spin label at C707 (SH1). X- and W-band EPR spectra were recorded for the apo state and in the presence of ADP and nucleotide(More)
We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a(More)
Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical(More)
The radial mode matching (RMM) method has been used to calculate accurately the microwave field distribution of the TE(011) mode in a spherical EPR cavity containing a linear aqueous sample, in order to understand in detail the factors affecting sensitivity in EPR measurements at X band. Specific details of the experiment were included in the calculations,(More)
Exercise is associated with an increase in oxygen flux through the mitochondrial electron transport chain that has recently been demonstrated to increase the production of reactive oxygen species (ROS) in skeletal muscle. This study examined whether exercise also causes free radical production in the heart. We measured ROS production in seven chronically(More)
For many proteins, especially for molecular motors and other enzymes, the functional mechanisms remain unsolved due to a gap between static structural data and kinetics. We have filled this gap by detecting structure and kinetics simultaneously. This structural kinetics experiment is made possible by a new technique, (TR)(2)FRET (transient time-resolved(More)
Rotation of the bacterial flagellum is powered by a proton influx through the peptidoglycan (PG)-tethered stator ring MotA/B. MotA and MotB form an inner-membrane complex that does not conduct protons and does not bind to PG until it is inserted into the flagellar motor. The opening of the proton channel involves association of the plug helices in the(More)
Pulsed electron paramagnetic resonance at the microwave K(a) band (~30 GHz) was used to study the coordination of adenosine nucleotides to Mn(2+) at the active site of myosin ATPase and in solution. We have found that the electron spin echo (ESE) field sweep, electron-nuclear double resonance (ENDOR) and ESE envelope modulation (ESEEM) techniques are not(More)