Learn More
Infection with the human microbial pathogen Helicobacter pylori is assumed to lead to invasive gastric cancer. We find that H. pylori activates the hepatocyte growth factor/scatter factor receptor c-Met, which is involved in invasive growth of tumor cells. The H. pylori effector protein CagA intracellularly targets the c-Met receptor and promotes cellular(More)
Helicobacter pylori infection causes gastric pathology such as ulcer and carcinoma. Because H. pylori is auxotrophic for cholesterol, we have explored the assimilation of cholesterol by H. pylori in infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent(More)
Ras proteins control the signalling pathways that are responsible for normal growth and malignant transformation. Raf protein kinases are direct Ras effector proteins that initiate the mitogen-activated protein kinase (MAPK) cascade, which mediates diverse biological functions such as cell growth, survival and differentiation. Here we show that prohibitin,(More)
We have isolated and characterised three barley cDNAs encoding glutathione peroxidase (GPX) homologues, designated HVGPH1, HVGPH2 and HVGPH3. HVGPH1 may represent a cytosolic form of GPX. The structure of the HVGPH2 N-terminal domain is typical for a plastid transit peptide. A potential peroxisomal targeting sequence occurs near the N-terminus of HVGPH3.(More)
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were(More)
Amongst the most severe clinical outcomes of life-long infections with Helicobacter pylori is the development of peptic ulcers and gastric adenocarcinoma--diseases often associated with an increase of regulatory T cells. Understanding H. pylori-driven regulation of T cells is therefore of crucial clinical importance. Several studies have defined mammalian(More)
O-Glycans of the human gastric mucosa show antimicrobial activity against the pathogenic bacterium Helicobacter pylori by inhibiting the bacterial cholesterol-alpha-glucosyltransferase (Kawakubo, M., Ito, Y., Okimura, Y., Kobayashi, M., Sakura, K., Kasama, S., Fukuda, M. N., Fukuda, M., Katsuyama, T., and Nakayama, J. (2004) Science 305, 1003-1006). This(More)
A combined physical and genetic map of the cyanobacterium Synechocystis sp. strain PCC 6803 chromosome was constructed. An estimated genome size of 3.82 Mb was obtained by summing the sizes of 25 MluI or 40 NotI fragments seen by pulsed-field electrophoresis. The order of the restriction fragments was determined by using two independent experimental(More)
The expression pattern and level of light-regulated genes are controlled by complex regulatory networks. Expression of genes encoding chlorophyll a/b-binding proteins of photosystem II is controlled by different photoreceptors and regulated primarily at the level of transcription. Light-dependent transcription of these genes is further modulated by the(More)
Helicobacter pylori may cause chronic gastritis, gastric cancer, or lymphoma. Myeloid antigen-presenting cells (APCs) are most likely involved in the induction and expression of the underlying inflammatory responses. To study the interaction of human APC subsets with H. pylori, we infected monocytes, monocyte-derived dendritic cells (DCs), and(More)