Learn More
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns.(More)
Polycomb group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates, but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. Here, we determined the distribution(More)
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties(More)
Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average(More)
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our(More)
Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to(More)
Polycomb group proteins are transcriptional repressors that control many developmental genes. The Polycomb group protein Enhancer of Zeste has been shown in vitro to methylate specifically lysine 27 and lysine 9 of histone H3 but the role of this modification in Polycomb silencing is unknown. We show that H3 trimethylated at lysine 27 is found on the entire(More)
The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z)](More)
Chromatin environments differ greatly within a eukaryotic genome, depending on expression state, chromosomal location, and nuclear position. In genomic regions characterized by high repeat content and high gene density, chromatin structure must silence transposable elements but permit expression of embedded genes. We have investigated one such region,(More)
Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of(More)