Yuri B. Saalmann

Learn More
Attention helps us process potentially important objects by selectively increasing the activity of sensory neurons that represent the relevant locations and features of our environment. This selection process requires top-down feedback about what is important in our environment. We investigated how parietal cortical output influences neural activity in(More)
Selective attention mechanisms route behaviorally relevant information through large-scale cortical networks. Although evidence suggests that populations of cortical neurons synchronize their activity to preferentially transmit information about attentional priorities, it is unclear how cortical synchrony across a network is accomplished. Based on its(More)
The 3alpha-hydroxy,5alpha-reduced pregnane steroids, allopregnanolone and allotetrahydrodeoxycorticosterone, are the most potent endogenous positive modulators of GABA(A) receptor-mediated inhibition. This study presents the first immunohistochemical examination of the cellular distribution of 3alpha-hydroxy,5alpha-reduced pregnane steroids across the(More)
Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma-band (30-100 Hz) neural activity contributes to local BOLD signals, the neural basis of interareal BOLD correlations is unclear. We first defined a visual network in monkeys based on(More)
The thalamus has traditionally been thought to passively relay sensory information to the cortex. By showing that responses in visual thalamus are modulated by perceptual and cognitive tasks, recent fMRI and physiology studies have helped revise this view. The modulatory input to the visual thalamus derives from functionally distinct cortical and(More)
The brain directs its limited processing resources through various selection mechanisms, broadly referred to as attention. The present study investigated the temporal dynamics of two such selection mechanisms: space- and object-based selection. Previous evidence has demonstrated that preferential processing resulting from a spatial cue (i.e., space-based(More)
An important problem in the study of the mammalian visual system is whether functionally different retinal ganglion cell types are anatomically segregated further up along the central visual pathway. It was previously demonstrated that, in a New World diurnal monkey (marmoset), the neurones carrying signals from the short-wavelength-sensitive (S) cones(More)
The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline(More)
Fast inhibitory neurotransmission in the brain is largely mediated by the gamma-aminobutyric acid-type A (GABA(A)) receptor. The 3alpha,5alpha-reduced neurosteroids (e.g., allopregnanolone) are the most potent endogenous modulators of the GABA(A) receptor. Although it is known that 3alpha,5alpha-reduced neurosteroid levels change during stress or depression(More)