Learn More
An extracellular β-agarase was purified from Pseudoalteromonas sp. NJ21, a Psychrophilic agar-degrading bacterium isolated from Antarctic Prydz Bay sediments. The purified agarase (Aga21) revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of 80 kDa. The optimum pH and temperature of the(More)
AIMS Nuclear factor-kappaB (NF-kappaB) plays a critical role in cell growth and inflammation during the progression of cardiac hypertrophy and heart failure. Several members of nuclear receptor superfamily, including liver X receptors (LXRalpha and LXRbeta), have been shown to suppress inflammatory responses, but little is known about their effects in(More)
This paper presents a membrane algorithm, called MAQIS, by appropriately combining concepts and principles of membrane computing and quantum-inspired evolutionary approach. MAQIS has four distinct features from the membrane algorithms reported in the literature: initial solutions are only inside the skin membrane; different regions separated by membranes(More)
RATIONALE Peroxisome proliferator-activated receptors (PPARs) (alpha, gamma, and delta/beta) are nuclear hormone receptors and ligand-activated transcription factors that serve as key determinants of myocardial fatty acid metabolism. Long-term cardiomyocyte-restricted PPARdelta deficiency in mice leads to depressed myocardial fatty acid oxidation,(More)
Mitofusin 2 (Mfn2) has been proposed as an important mitochondrial protein in maintaining mitochondrial network and bioenergetics. Mfn2 is highly expressed in the heart, but is downregulated in response to hypertrophic stimuli. However, little is known about how Mfn2's expression is regulated in cardiomyocytes. Here, we have investigated how Mfn2 expression(More)
This paper proposes a multi-objective membrane algorithm, called MOMA, for solving multi-objective knapsack problems. MOMA is designed with the framework and rules of a cell-like P system, and concepts and principles of quantum-inspired evolutionary algorithms. Three bench knapsack problems used frequently in the literature are applied to test MOMA(More)
While the roles of PPARα and PPARδ (β) in transcriptional regulation of myocardial lipid metabolisms are well established, an essential role of PPARγ in regulating lipid metabolisms in the adult heart remains unclear. In this study, we investigated whether PPARγ is required for normal myocardial lipid metabolism at basal condition in adult mice. We assessed(More)
This paper proposes a framework named multi-objective ant colony optimization based on decomposition (MoACO/D) to solve bi-objective traveling salesman problems (bTSPs). In the framework, a bTSP is first decomposed into a number of scalar optimization sub-problems using Tchebycheff approach. To suit for decomposition, an ant colony is divided into many(More)
Peroxisome proliferator-activated receptor delta (PPARdelta) is an essential determinant of basal myocardial fatty acid oxidation (FAO) and bioenergetics. We wished to determine whether increased lipid loading affects the PPARdelta deficient heart in transcriptional regulation of FAO and in the development of cardiac pathology. Cardiomyocyte-restricted(More)
It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a(More)