Learn More
Representing a basal branch of arachnids, scorpions are known as 'living fossils' that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve(More)
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy,(More)
The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant,(More)
Plants have evolved and adapted to different environments. Dwarfism is an adaptive trait of plants that helps them avoid high-energy costs under unfavourable conditions. The role of gibberellin (GA) in plant development has been well established. Several plant dehydration-responsive element-binding proteins (DREBs) have been identified and reported to be(More)
Gibberellic acids (GAs) are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by(More)
It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development(More)
Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic(More)
Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter,(More)
Crown roots constitute the majority of the rice (Oryza sativa) root system and play an important role in rice growth and development. However, the molecular mechanism of crown root formation in rice is not well understood. Here, we characterized a rice dominant mutant, root enhancer1 (ren1-D), which was observed to exhibit a more robust root system,(More)
Valsartan (1), an antihypertensive drug of the sartan family, and three related compounds, 3-methyl-2-((2'-(1-methyl-1H-tetrazol-5-yl)biphenyl-4-ylmethyl) pentanoylamino)butyric acid (2), 3-isopropyl-6-propyl-4-(2'-(1H-tetrazol-5-yl)biphenyl-4-ylmethyl) morpholine-2,5-dione (3), and 3-isopropyl-6-propyl-4-(4'-(1H-tetrazol-5-yl)biphenyl4-ylmethyl)(More)