Learn More
Banana production has been severely hindered by the long-term practice of monoculture agriculture. Fusarium wilt, caused by the Fusarium oxysporum f. sp. cubense (FOC), is one of the most destructive diseases that can afflict banana plants. It is both necessary and urgent to find an efficient method for protecting banana production worldwide. In this study,(More)
Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot(More)
In our previous work, applying biofertilizer containing Bacillus amyloliquefaciens strain NJN-6 to a banana orchard infected by a serious Fusarium wilt disease over two consecutive years effectively controlled this soil-borne disease. In this study, deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) sequences was(More)
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA(More)
Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA(More)
Banana Fusarium wilt disease is caused by the Fusarium oxysporum f. sp. cubense race 4 fungus and is a vast problem for global banana production. Suppressive and conducive soils were analyzed to characterize important microbial populations and soil chemical properties that contribute to disease suppressiveness. Soil bacteria communities from the two banana(More)
Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments(More)
The continuous cropping of banana in the same field may result in a serious soil-borne Fusarium wilt disease and a severe yield decline, a phenomenon known as soil sickness. Although soil microorganisms play key roles in maintaining soil health, the alternations of soil microbial community and relationship between these changes and soil sickness under(More)
As a result, " This new variant, which was originally limited to parts of Asia (Indonesia, Philippines, and China) and Australia, has recently been discovered in Latin America, raising fears of another crop collapse 5,6. " should read: " This new variant, which was originally limited to parts of Asia (Indonesia, Philippines, and China) and Australia, has(More)
1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China, 2 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science,(More)