Learn More
CDP-6-deoxy-delta 3,4-glucoseen reductase (E3), which catalyzes the reduction of the C-3 deoxygenation step during the formation of CDP-ascarylose, a 3,6-dideoxyhexose found in the lipopolysaccharide of Yersinia pseudotuberculosis, has been expressed at high level in Escherichia coli (670 times over the wild-type strain). This flavoenzyme, which also(More)
The 3,6-dideoxyhexoses, usually confined to the cell wall lipopolysaccharide of gram-negative bacteria, are essential to serological specificity and are formed via a complex biosynthetic pathway beginning with CDP-D-hexoses. In particular, the biosynthesis of CDP-ascarylose, one of the naturally occurring 3,6-dideoxyhexoses, consists of five enzymatic(More)
Three proteins containing a midasin homologue 1 (MDN1) domain from the yeast Solanum chacoense and Arabidopsis thaliana have important functions in yeast survival, seed development, and female gametogenesis. In this study, a novel protein containing the MDN1 domain from Arabidopsis negatively regulated abscisic acid (ABA) signalling during seed germination.(More)
The 3,6-dideoxyhexoses can be found in the cell wall lipopolysaccharide of Gram-negative bacteria, where they have been shown to be the dominant antigenic determinants. All naturally occurring 3,6-dideoxyhexoses, with colitose as the only exception, are biosynthesized via a complex pathway that begins with CDP-d-glucose. Included in this pathway is(More)
CDP-6-deoxy-L-threo-D-glycero-4-hexulose 3-dehydrase (E1) purified from Yersinia pseudotuberculosis is a pyridoxamine 5'-phosphate (PMP) dependent iron-sulfur-containing enzyme which catalyzes the C-O bond cleavage at C-3 of its substrate leading to the formation of 3,6-dideoxyhexose. This enzyme is rapidly inactivated by diethyl pyrocarbonate (DEP) at pH(More)
Wali7 domain-containing protein has been isolated from roots and root hairs. However, the function of this protein has not been reported yet. This study demonstrated that overexpression of a gene encoding Arabidopsis Wali7 domain-containing protein, called auxin-mediated short root (ASR), produced a short-root phenotype. Expression analysis indicated that(More)
  • 1