Yunxin Zhang

Learn More
Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. So far, the physical mechanism underlying the unidirectional bias of the kinesin is not fully understood.(More)
Experimental data suggest that mitochondria is involved in tumorigenesis. However, little is known about the qualitative and quantitative changes of mtDNA in colorectal cancer tissues. We therefore conducted possible correlations of the mitochondrial DNA (mtDNA) copy number in colorectal cancer (CRC) with clinical and pathological findings and CRC(More)
Promoter strength, or activity, is important in genetic engineering and synthetic biology. A constitutive promoter with a certain strength for one given RNA can often be reused for other RNAs. Therefore, the strength of one promoter is mainly determined by its nucleotide sequence. One of the main difficulties in genetic engineering and synthetic biology is(More)
In a cell, organelles and vesicles are usually transported by cooperation of several motor proteins, including plus-end-directed motor kinesin and minus-end-directed motor dynein. In recent years, many biophysical models have been constructed to understand the mechanism of this transport; however, so far, its basic principle has not been completely(More)
In this study, a two-state mechanochemical model is presented to describe the dynamic instability of microtubules (MTs) in cells. The MT switches between two states, the assembly and disassembly states. In assembly state, the growth of MTs includes two processes: free GTP-tubulin binding to the tip of protofilament (PF) and conformation change of PF, during(More)
Bladder cancer-specific oncolytic adenovirus Ad/PSCAE/UPII/E1A, carrying E1A gene regulated by human Uroplakin II (UPII) promoter and prostate stem cell antigen enhancer (PSCAE), could kill bladder tumor cells preferentially. The aim of this study was to examine the effects of Ad/PSCAE/UPII/E1A combined with cisplatin on human bladder cancer cells and to(More)
Molecular motors are essential components for the biophysical functions of the cell. Current quantitative understanding of how multiple motors move along a single track is not complete, even though models and theories for a single motor mechanochemistry abound. Recently, Müller et al. have developed a tug-of-war model to describe the bidirectional movement(More)
In this research, the totally asymmetric exclusion process without particle number conservation is discussed. Based on the mean field approximation and the Rankine-Hugoniot condition, the necessary and sufficient conditions of the existence of the domain wall have been obtained. Moreover, the properties of the domain wall, including the location and height,(More)
The physical properties of a molecular motor with load changing in a wide range will be discussed in this study, in particular the mean velocity, output power and energy efficiency. The main difficulty of this study is that both the states of the molecular motor and the energy barriers between them change with the loading force. Moreover, with the change of(More)
Motor proteins in living cells, such as kinesin and dynein, can move processively along the microtubule (MT), and can also detach from or attach to MT stochastically. Experiments found that the traffic of motors along MT may be jammed; thus various theoretical models were designed to understand this process. However, previous studies mainly focused on motor(More)