Learn More
The incidence of Alzheimer disease (AD) and vascular dementia is greatly increased following cerebral ischemia and stroke in which hypoxic conditions occur in affected brain areas. beta-Amyloid peptide (Abeta), which is derived from the beta-amyloid precursor protein (APP) by sequential proteolytic cleavages from beta-secretase (BACE1) and presenilin-1(More)
An important pathological feature of Alzheimer's disease (AD) is the presence of extracellular senile plaques in the brain. Senile plaques are composed of aggregations of small peptides called β-amyloid (Aβ). Multiple lines of evidence demonstrate that overproduction/aggregation of Aβ in the brain is a primary cause of AD and inhibition of Aβ generation has(More)
Sorting nexin 27 (SNX27), a brain-enriched PDZ domain protein, regulates endocytic sorting and trafficking. Here we show that Snx27(-/-) mice have severe neuronal deficits in the hippocampus and cortex. Although Snx27(+/-) mice have grossly normal neuroanatomy, we found defects in synaptic function, learning and memory and a reduction in the amounts of(More)
β-Amyloid precursor protein (APP) is a critical factor in the pathogenesis of Alzheimer's disease (AD). APP undergoes post-translational proteolysis/processing to generate the hydrophobic β-amyloid (Aβ) peptides. Deposition of Aβ in the brain, forming oligomeric Aβ and plaques, is identified as one of the key pathological hallmarks of AD. The processing of(More)
Mutations in PSEN1 and PSEN2 genes account for the majority of cases of early-onset familial Alzheimer disease. Since the first prediction of a genetic link between PSEN1 and PSEN2 with Alzheimer's disease, many research groups from both academia and pharmaceutical industry have sought to unravel how pathogenic mutations in PSEN cause presenile dementia.(More)
The proteolytic cleavage of Alzheimer beta-amyloid precursor protein (APP) and signaling receptor Notch is mediated by the PS/gamma-secretase complex, which consists of presenilins, nicastrin, APH-1, and PEN-2. Although the four components are known to coordinately regulate each other at the protein level, information regarding their transcription(More)
gamma-Secretase, which is responsible for the intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch, is a multiprotein complex consisting of at least four components: presenilin (PS); nicastrin (Nct); APH-1 (anterior pharynx-defective-1); and presenilin enhancer-2 (PEN-2). Presenilin 1 (PS1) is known to be(More)
Presenilins (PS, PS1/PS2) are necessary for the proteolytic activity of gamma-secretase, which cleaves multiple type I transmembrane proteins including Alzheimer's beta-amyloid precursor protein (APP), Notch, ErbB4, etc. Cleavage by PS/gamma-secretase releases the intracellular domain (ICD) of its substrates. Notch ICD translocates into the nucleus to(More)
Alzheimer's disease is cytopathologically characterized by loss of synapses and neurons, neuritic amyloid plaques consisting of beta-amyloid (Abeta) peptides, and neurofibrillary tangles consisting of hyperphosphorylated tau protein in susceptible brain regions. Abeta, which triggers a cascade of pathogenic events including tau phosphorylation and neuronal(More)
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion.(More)