Yunus E Kurtoglu

Learn More
Understanding and improving drug release kinetics from dendrimer-drug conjugates are key steps to improve their in vivo efficacy. N-Acetyl cysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. There is a need for delivery of NAC which can enhance its(More)
Drug release from polymer-drug conjugates plays a crucial role on the efficacy. This is especially true for dendrimers where there is a steric crowding at the surface. The drug release characteristics of G4-polyamidoamine (PAMAM) dendrimer-ibuprofen conjugates with ester, amide, and peptide linkers were investigated, in addition to a linear PEG-ibuprofen(More)
UNLABELLED Erythromycin (EM), an antibiotic that has been used for infectious diseases, is now gaining attention because of its novel anti-inflammatory effects. We explore a dendrimer-EM nanodevice for sustained treatment of orthopedic inflammation. To sustain pharmacological activity, EM was conjugated to poly(amidoamine) dendrimer (PAMAM) through an ester(More)
Dendrimers are an emerging class of nanoscale intracellular drug delivery vehicles. Methylprednisolone (MP) is an important corticosteroid used in the treatment (through inhalation) of lung inflammation associated with asthma. The ability of MP-polyamidoamine (PAMAM) dendrimer conjugate to improve the airway delivery was evaluated in a pulmonary(More)
N-Acetyl-L-cysteine (NAC) is an antioxidant and anti-inflammatory agent with significant potential in clinical applications including stroke and neuroinflammation. The drug shows high plasma binding upon IV administration, requiring high doses and associated side effects. Through the use of an appropriate delivery vehicle, the stability and efficacy of NAC(More)
  • 1