Learn More
This paper presents an opinion analysis system developed by CUHK_PolyU_Tsinghua Web Information Analysis Group (WIA), namely WIA-Opinmine, for NTCIR-7 MOAT Task. Different from most existing opinion mining systems, which recognize opinionated sentences as one-step classification procedure, WIA-Opinmine adopts a multi-pass coarse-fine analysis strategy. A(More)
This paper presents the CUHK opinion analysis system, namely Opinmine, for the NTCIR-6 pilot task. Opinmine comprises of three functional modules: (1) Preprocessing and Assignment Module (PAM) performs word segmentation, part-of-speech (POS) tagging and named entity recognition on the input Chinese text. It is based on lexicalized Hidden Markov Model and(More)
This paper presents an adaptive email categorization method developed for the Active Information Management component of the EU FASiL project. The categorization strategy seeks to categorize new emails by learning user preferences, with a feature-balancing algorithm that improves the data training effectiveness and with a dynamic scheduling strategy that(More)
Lyric-based song sentiment classification seeks to assign songs appropriate sentiment labels such as light-hearted and heavy-hearted. Four problems render vector space model (VSM)-based text classification approach ineffective: 1) Many words within song lyrics actually contribute little to sentiment; 2) Nouns and verbs used to express sentiment are(More)
Two challenging issues are notable in tweet clustering. Firstly, the sparse data problem is serious since no tweet can be longer than 140 characters. Secondly, synonymy and polysemy are rather common because users intend to present a unique meaning with a great number of manners in tweets. Enlightened by the recent research which indicates Wikipedia is(More)