Learn More
The connected vehicle research program is a multimodal research initiative in the U.S. that envisions a fully connected transportation system with wireless communications linking vehicles, the infrastructure, and handheld smart devices. This paper designs and evaluates a reservation-based approach to intersection control that is designed to take full(More)
Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program, 3dRNA, for RNA tertiary(More)
The specific binding of ligands is the first step of gene expression or translation regulation by riboswitches. However, understanding the mechanism of the specific binding is still difficult because the tertiary structures of the riboswitch aptamers are available almost only for ligand-bound state at present. In this paper we hope to give some insights(More)
Riboswitches are novel RNA regulatory elements. Each riboswitch molecule consists of two domains: aptamer and express platform. The three-dimensional (3D) structure of the aptamer domain, depending on ligand binding or not, controls that of the express platform, which then switches on or off transcriptional or translational process. Here we study the two(More)
Mammals and other complex organisms can transcribe an abundance of long non-coding RNAs (lncRNAs) that fulfill a wide variety of regulatory roles in many biological processes. These roles, including as scaffolds and as guides for protein-coding genes, mainly depend on the structure and expression level of lncRNAs. In this review, we focus on the current(More)
Computational prediction of RNA tertiary structures is a significant challenge, especially for longer RNA and pseudoknots. At present it is still difficult to do this by pure all-atom molecular dynamics simulation. One of possible approaches is through hierarchical steps: from sequence to secondary structure and then to tertiary structure. Here we present(More)
The CD4(+) and CD8(+) T cell dichotomy is essential for effective cellular immunity. How individual T cell identity is established remains poorly understood. Here we show that the high-mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4(+) lineage-associated genes including Cd4, Foxp3 and Rorc in CD8(+) T cells. Tcf1-(More)