Yuni K. Dewaraja

Learn More
UNLABELLED Accuracy of 131I tumor quantification after radioimmunotherapy (RIT) was investigated for SPECT imaging with an ultra-high-energy (UHE) collimator designed for imaging 511-keV photons. METHODS First, measurements and Monte Carlo simulations were carried out to compare the UHE collimator with a conventionally used, high-energy collimator. On the(More)
UNLABELLED A study of the use of (131)I-labeled tositumomab, preceded by an unlabeled tositumomab predose, for therapy of 76 previously untreated non-Hodgkin's lymphoma patients has been completed at the University of Michigan. Fifty-two of the 76 treated patients were imaged once during therapy with SPECT to assist in dosimetric estimation. In this(More)
UNLABELLED A study of the use of 131I-labeled anti-B1 monoclonal antibody, proceeded by an unlabeled predose, for therapy of previously untreated non-Hodgkin's lymphoma patients has recently been completed at the University of Michigan, Ann Arbor. More than half of the patients treated were imaged intratherapy with SPECT to separate apparently large tumors,(More)
This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI)(More)
In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and(More)
The accuracy of absorbed dose calculations in personalized internal radionuclide therapy is directly related to the accuracy of the activity (or activity concentration) estimates obtained at each of the imaging time points. MIRD Pamphlet no. 23 presented a general overview of methods that are required for quantitative SPECT imaging. The present document is(More)
We have implemented highly accurate Monte Carlo based scatter modeling (MCS) with 3-D ordered subsets expectation maximization (OSEM) reconstruction for I-131 single photon emission computed tomography (SPECT). The scatter is included in the statistical model as an additive term and attenuation and detector response are included in the(More)
We experimentally investigated the SPECT recovery of I-131 activity in multiple spheres located simultaneously at different locations within a cylindrical phantom that had an elliptical cross section. The sphere volumes ranged from 209 cc down to 4.2 cc. A Prism 3000 camera and two types of parallel-hexagonal-hole collimation were employed: high energy (HE)(More)
BACKGROUND Infringement by differentiated thyroid carcinoma on the brain is rare but, when suspected, the patient deserves special attention. A patient with an enlarging metastasis of thyroid carcinoma to the skull that was impinging on the brain illustrates diagnostic and therapeutic strategies applicable to the treatment of metastatic carcinoma. METHODS(More)
UNLABELLED For optimal treatment planning in radionuclide therapy, robust tumor dose-response correlations must be established. Here, fully 3-dimensional (3D) dosimetry was performed coupling SPECT/CT at multiple time points with Monte Carlo-based voxel-by-voxel dosimetry to examine such correlations. METHODS Twenty patients undergoing (131)I-tositumomab(More)