Learn More
In addition to regulating growth and development, the most important function of microRNAs (miRNAs) in plants is the regulation of a variety of cellular processes underlying plant adaptation to environmental stresses. To gain a deep understanding of the mechanism of drought tolerance in rice, genome-wide profiling and analysis of miRNAs was carried out in(More)
A faster system to get tuberous roots from in vitro cultured cassava plants may enhance the process of exploring the function and practical application of some root-specific expressed genes. The effects of cytokinin, auxin, sucrose, maltose, and glucose on development of shoots and tuberous roots and plantlet regeneration of in vitro cultured cassava were(More)
A novel gene, OsAHL1, containing an AT-hook motif and a PPC domain was identified through genome-wide profiling and analysis of mRNAs by comparing the microarray of drought-challenged versus normally watered rice. The results indicated OsAHL1 has both drought avoidance and drought tolerance that could greatly improve drought resistance of the rice plant.(More)
The ongoing deficit of fresh water resource in rice growing regions has made the selection of water-saving and drought-resistance rice (WDR) a crucial factor in developing sustainable cultivation. HuHan2B, a new japonica maintainer for WDR breeding, had the same yield potential as recurrent parent HanFengB but showed improved drought resistance in fields.(More)
In contrast to wild species, drought-tolerance in crops requires a fully functional metabolism during drought (particularly photosynthetic processes). However, the link between drought-tolerance, photosynthetic regulation during drought, and the associated transcript and metabolic foundation, remains largely unknown. For this study, we used two rice(More)
  • 1