Yunfa Fu

Learn More
OBJECTIVE In order to increase the number of states classified by a brain-computer interface (BCI), we utilized a motor imagery task where subjects imagined both force and speed of hand clenching. APPROACH The BCI utilized simultaneously recorded electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) signals. The(More)
Simultaneous acquisition of brain activity signals from the sensorimotor area using NIRS combined with EEG, imagined hand clenching force and speed modulation of brain activity, as well as 6-class classification of these imagined motor parameters by NIRS-EEG were explored. Near infrared probes were aligned with C3 and C4, and EEG electrodes were placed(More)
Functional near-infrared spectroscopy (fNIRS) is an emerging optical technique, which can assess brain activities associated with tasks. In this study, six participants were asked to perform three imageries of hand clenching associated with force and speed, respectively. Joint mutual information (JMI) criterion was used to extract the optimal features of(More)
Near-infrared spectroscopy (NIRS) is a non-invasive optical technique used for brain-computer interface (BCI). This study aims to investigate the brain hemodynamic responses of clench force and speed motor imagery and extract task-relevant features to obtain better classification performance. Given the non-stationary characteristics of real hemodynamic(More)
We introduce a new motor parameter imagery paradigm using clench speed and clench force motor imagery. The time-frequency-phase features are extracted from mu rhythm and beta rhythms, and the features are optimized using three process methods: no-scaled feature using "MIFS" feature selection criterion, scaled feature using "MIFS" feature selection(More)
We introduce a new motor parameter imagery paradigm using clench speed and clench force motor imagery. The time-frequency-phase features are extracted from mu rhythm and beta rhythms, and the features are optimized using three process methods: no-scaled feature using " MIFS " feature selection criterion, scaled feature using " MIFS " feature selection(More)
  • 1