Learn More
The rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate for modeling the structure and function of the brain. Brain atlases, and particularly those based on magnetic resonance imaging (MRI), have become important tools for understanding normal brain structure, and for identifying structural abnormalities resulting from disease states,(More)
This study investigated the impact of infant maltreatment on juvenile rhesus monkeys' behavioral reactivity to novel stimuli and its associations with amygdala volume. Behavioral reactivity to novel stimuli of varying threat intensity was measured using Approach/Avoidance (AA) and Human Intruder (HI) tasks. In vivo magnetic resonance imaging (MRI) was used(More)
Primate neuroimaging provides a critical opportunity for understanding neurodevelopment. Yet the lack of a normative description has limited the direct comparison with changes in humans. This paper presents for the first time a cross-sectional diffusion tensor imaging (DTI) study characterizing primate brain neurodevelopment between 1 and 6 years of age on(More)
Rhesus macaques are commonly used as a translational animal model in neuroimaging and neurodevelopmental research. In this report, we present longitudinal data from both structural and diffusion MRI images generated on a cohort of 34 typically developing monkeys from 2 weeks to 36 months of age. All images have been manually skull stripped and are being(More)
Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field(More)
Existing atlas-building methods for diffusion-tensor images are not designed for longitudinal data. This paper proposes a novel longitudinal atlas-building framework explicitly accounting for temporal dependencies of longitudinal MRI data. Subject-specific growth modeling, cross-sectional atlas-building and growth modeling in atlas space are combined with(More)
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge,(More)
Longitudinal imaging studies are frequently used to investigate temporal changes in brain morphology and often require spatial correspondence between images achieved through image registration. Beside morphological changes, image intensity may also change over time, for example when studying brain maturation. However, such intensity changes are not(More)
Geodesic regression generalizes linear regression to general Riemannian manifolds. Applied to images, it allows for a compact approximation of an image time-series through an initial image and an initial momentum. Geodesic regression requires the definition of a squared residual (squared distance) between the regression geodesic and the measurement images.(More)
We present a novel cortical correspondence method employing group-wise registration in a spherical parametrization space for the use in local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is unbiased registration that estimates a continuous smooth deformation field into an unbiased average space via(More)