Yun-Ting Keng

Learn More
The reversible regulation of protein tyrosine phosphatase is an important mechanism in processing signal transduction and regulating cell cycle. Recent reports have shown that the active site cysteine residue, Cys215, can be reversibly oxidized to a cysteine sulfenic derivative (Denu and Tanner, 1998; Lee et al., 1998). We propose an additional modification(More)
Growth factors induce intracellular production of reactive oxygen species in non-phagocytic cells and elevation of their phosphorylated protein tyrosine level. The latter can be achieved by activating protein-tyrosine kinases and/or inactivating protein-tyrosine phosphatases (PTPs). A highly abundant PTP, PTP-1B, is known to be inactivated by oxidation of(More)
Protein-tyrosine phosphatases (PTPases) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Defective or inappropriate regulation of PTPase activity leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases including cancers and diabetes. For example, recent(More)
An "inverse alanine scanning" peptide library approach has been developed to assess the substrate specificity of protein-tyrosine phosphatases (PTPases). In this method each Ala moiety in the parent peptide, Ac-AAAApYAAAA-NH(2), is separately and sequentially replaced by the 19 non-Ala amino acids to generate a library of 153 well defined peptides. The(More)
Protein tyrosine phosphatases (PTPases) are involved in the control of tyrosine phosphorylation levels in the cell and are believed to be crucial for the regulation of a multitude of cellular functions. A detailed understanding of the role played by PTPases in various signaling pathways has not yet been achieved, and potent and selective PTPase inhibitors(More)
Several protein tyrosine phosphatases (PTPases) have been implicated as regulatory agents in the insulin-stimulated signal transduction pathway, including PTP1B, PTPalpha, and LAR. Furthermore, since all three enzymes are suggested to serve as negative regulators of insulin signaling, one or more may play a pivotal role in the pathogenesis of insulin(More)
The hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases (PTPases) was studied with the aim of providing a mechanistic framework for the reactions of this important class of substrate analogues. O-arylphosphorothioates are hydrolyzed 2 to 3 orders of magnitude slower than O-aryl phosphates by PTPases. This is in contrast to the solution(More)
General acid catalysis in protein tyrosine phosphatases (PTPases) is accomplished by a conserved Asp residue, which is brought into position for catalysis by movement of a flexible loop that occurs upon binding of substrate. With the PTPase from Yersinia, we have examined the effect on general acid catalysis caused by mutations to two conserved residues(More)
The effect of suramin, a well known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers, on protein-tyrosine phosphatases (PTPases) has been examined. Suramin is a reversible and competitive PTPase inhibitor with Kis values in the low microM range, whereas the Kis for the dual specificity phosphatase VHR is at least(More)
Most transmembrane, receptor-like protein-tyrosine phosphatases (RPTPs) contain two cytoplasmic catalytic protein-tyrosine phosphatase (PTP) domains, of which the membrane-proximal domain, D1, contains the majority of the activity, while the membrane-distal domain, D2, exhibits little or no activity. We have investigated the structural basis for reduced(More)