Yun Suk Jung

Learn More
Light interacting with nanostructured metals excites the collective charge density fluctuations known as surface plasmons (SP). Through excitation of the localized SP eigenmodes incident light is trapped on the nanometer spatial and femtosecond temporal scales and its field is enhanced. Here we demonstrate the imaging and quantum control of SP dynamics in a(More)
High-speed electronic devices rely on short carrier transport times, which are usually achieved by decreasing the channel length and/or increasing the carrier velocity. Ideally, the carriers enter into a ballistic transport regime in which they are not scattered. However, it is difficult to achieve ballistic transport in a solid-state medium because the(More)
We report quantitative measurement of heat generation in Au-nanoparticle colloidal solutions induced by radiofrequency (RF) electromagnetic waves (13.56 MHz; 25 W). The possible role of Au nanoparticles in RF heating was systematically investigated by separating the metal nanoparticles away from the colloidal solutions by centrifugation. Contrary to the(More)
Electromagnetic absorption and subsequent heating of nanoparticle solutions and simple NaCl ionic solutions is examined for biomedical applications in the radiofrequency range at 13.56 MHz. It is shown via both theory and experiment that for in vitro measurements the shape of the solution container plays a major role in absorption and heating.
When a light wave hits a metal wedge structure, the metal surfaces respond to the incident light by generating both free-space and surface-bound waves. Here we present a physical model that elucidates electromagnetic interactions of an incoming planar wave with a simple semi-infinite 90 degrees metal wedge. We show that a metal wedge structure possesses an(More)
The adsorption of a self-assembled monolayer of molecules on a metal surface commonly causes a red-shift in its surface plasmon resonance. We report that the anomalous dispersion of surface plasmons in a Au nanoslit array structure can cause a blue-shift of optical transmission upon adsorption of a non-absorbing self-assembled monolayer of molecules. We(More)
We report near- to far-field measurement of optical wavefronts emanating from a nanoslit formed in a thin (50 nm thick) Ag film. The evolution of optical phases is imaged using a self-interference technique in conjunction with a scanning probe method. The phase relationship of the slit-transmitted waves with respect to the direct transmission through the(More)
  • 1