Yuly Billig

Learn More
Vertex operators discovered by physicists in string theory have turned out to be important objects in mathematics. One can use vertex operators to construct various realizations of the irreducible highest weight representations for affine Kac-Moody algebras. Two of these, the principal and homogeneous realizations, are of particular interest. The principal(More)
Energy-momentum tensor for the toroidal Lie algebras. Abstract. We construct vertex operator representations for the full (N + 1)-toroidal Lie algebra g. We associate with g a toroidal vertex operator algebra, which is a tensor product of an affine VOA, a sub-VOA of a hyperbolic lattice VOA, affine sl N VOA and a twisted Heisenberg-Virasoro VOA. The modules(More)
Magnetic hydrodynamics with asymmetric stress tensor. In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an abelian extension of the Lie algebra of vector fields with a non-trivial 2-cocycle. We use the Lie algebra approach to prove the energy(More)
Toroidal Lie algebras are very natural multi-variable generalizations of affine Kac-Moody algebras. The theory of affine Lie algebras is rich and beautiful, having connections with diverse areas of mathematics and physics. Toroidal Lie algebras are also proving themselves to be useful for the applications. Frenkel, Jing and Wang [FJW] used representations(More)