Yuliya Semenova

Learn More
We have investigated the influence of multimode fiber core (MMFC) diameters and lengths on the sensitivity of an SMS fiber based refractometer. We show that the MMFC diameter has significant influence on the refractive index (RI) sensitivity but the length does not. A refractometer with a lower MMFC diameter has a higher sensitivity. Experimental(More)
Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve(More)
This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future(More)
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre(More)
We demonstrate a novel miniature optical breathing sensor based on an Agarose infiltrated photonic crystal fiber interferometer. The sensor detects the variation in relative humidity that occurs between inhaled and exhaled breath. The sensor interrogation system can determine the breathing pattern in real time and can also predict the breathing rate and the(More)
Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT).(More)
This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated(More)
A wavelength-division-multiplexed passive optical network with flexible optical network unit internet-mental demonstration of an all-fiber variable optical attenuator based on liquid crystal infiltrated photonic crystal fiber, Microwave High-dynamic-range CþL band variable optical attenuator using a ti-A 1 Â 2 optical fiber switch using a dual-thickness SOI(More)
An interrogation technique for fiber Bragg grating (FBG) strain sensors with dynamic temperature compensation using a single-multiple-single-mode (SMS) fiber filter as a temperature compensating element is presented. Experimental results show that this technique offers a resolution of better than 3.4 muepsilon for strain measurements in the range from 0 to(More)
A simple, compact, low-cost electro-optic polarization converter based on a nematic liquid crystal (LC) sandwiched between two ion-exchanged glass channel waveguides is proposed. A three-dimensional (3D) fully-vectorial (FV) finite difference beam propagation method (FDBPM) is used to simulate this optical device. The performance of the proposed(More)