Yuliya Lierler

Learn More
Answer set programming is a new programming paradigm proposed in [1] and [2], and based on the answer set semantics of Prolog [3]. It is well known that an answer set for a logic program is also a model of the program’s completion [4]. The converse is true when the logic program is “tight” [6, 5]. Lin and Zhao [7] showed that for non-tight programs the(More)
Answer set programming (ASP) emerged in the late 1990s as a new logic programming paradigm that has been successfully applied in various application domains. Also motivated by the availability of efficient solvers for propositional satisfiability (SAT), various reductions from logic programs to SAT were introduced. All these reductions, however, are limited(More)
Using SAT solvers as inference engines in answer set programming systems showed to be a promising approach in building efficient systems. Nowadays SAT based answer set programming systems successfully work with nondisjunctive programs. This paper proposes a way to use SAT solvers for finding answer sets for disjunctive logic programs. We implement two(More)
Answer Set Solvers Yuliya Lierler University of Texas at Austin yuliya@cs.utexas.edu Abstract Nieuwenhuis, Oliveras, and Tinelli showed how to describe enhancements of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, instead of pseudocode. We design a similar framework for three algorithms that generate answer sets for logic programs:(More)
Disjunctive logic programming under the stable model semantics [GL91] is a new methodology called answer set programming (ASP) for solving combinatorial search problems. This programming method uses answer set solvers, such as DLV [Lea05], GNT [Jea05], SMODELS [SS05], ASSAT [LZ02], CMODELS [Lie05a]. Systems DLV and GNT are more general as they work with the(More)