Yuliang Xie

Learn More
Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation(More)
In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants K(m) and k(cat). The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly,(More)
Rapid and homogeneous mixing inside a microfluidic channel is demonstrated via the acoustic streaming phenomenon induced by the oscillation of sidewall sharp-edges. By optimizing the design of the sharp-edges, excellent mixing performance and fast mixing speed can be achieved in a simple device, making our sharp-edge-based acoustic micromixer a promising(More)
We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any(More)
We present a programmable acoustofluidic pump that utilizes the acoustic streaming effects generated by the oscillation of tilted sharp-edge structures. This sharp-edge-based acoustofluidic pump is capable of generating stable flow rates as high as 8 μL min(-1) (~76 Pa of pumping pressure), and it can tune flow rates across a wide range (nanoliters to(More)
Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW(More)
MCC templates composed of different sized polystyrene (PS) spheres were prepared by a spin-coating method. Glass slides (1 cm x 1 cm) were cleaned with acetone, ethanol, deionized water, 98% H2SO4/H2O2 (3:1), H2O/NH3·H2O/H2O2 (5:1:1), and distilled water in order to obtain superhydrophilic surfaces. A total of 10 µL monodisperse PS spheres in suspension(More)
We report an on-chip acoustofluidic method for sequential trapping and transporting of microparticles via acoustically oscillating bubbles. The size and location of bubbles were precisely controlled by lithography. When the acoustic waves were turned off, particles followed the streamlines dictated by laminar flow. When the acoustic waves were turned on,(More)
We demonstrate the first microfluidic-based on-chip liquefaction device for human sputum samples. Our device is based on an acoustofluidic micromixer using oscillating sharp edges. This acoustofluidic sputum liquefier can effectively and uniformly liquefy sputum samples at a throughput of 30 μL min(-1). Cell viability and integrity are maintained during the(More)
During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of(More)