Yuko Yamaguchi-Iwai

Learn More
Eukaryotic cells repair DNA double-strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the(More)
Yeast Mre11 functions with Rad50 and Xrs2 in a complex that has pivotal roles in homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA double-strand break (DSB) repair pathways. Vertebrate Mre11 is essential. Conditionally, MRE11 null chicken DT40 cells accumulate chromosome breaks and die upon Mre11 repression, showing frequent centrosome(More)
Iron must cross biological membranes to reach essential intracellular enzymes. Two proteins in the plasma membrane of yeast--a multicopper oxidase, encoded by the FET3 gene, and a permease, encoded by the FTR1 gene--were shown to mediate high-affinity iron uptake. FET3 expression was required for FTR1 protein to be transported to the plasma membrane. FTR1(More)
Using a scheme for selecting mutants of Saccharomyces cerevisiae with abnormalities of iron metabolism, we have identified a gene, AFT1, that mediates the control of iron uptake. AFT1 encodes a 78 kDa protein with a highly basic amino terminal domain and a glutamine-rich C-terminal domain, reminiscent of transcriptional activators. The protein also contains(More)
Yeast rad51 mutants are viable, but extremely sensitive to gamma-rays due to defective repair of double-strand breaks. In contrast, disruption of the murine RAD51 homologue is lethal, indicating an essential role of Rad51 in vertebrate cells. We generated clones of the chicken B lymphocyte line DT40 carrying a human RAD51 transgene under the control of a(More)
Intracellular homeostasis for zinc is achieved through the coordinate regulation of specific transporters engaged in zinc influx, efflux, and intracellular compartmentalization. We have identified a novel mammalian zinc transporter, zinc transporter 5 (ZnT-5), by virtue of its similarity to ZRC1, a zinc transporter of Saccharomyces cerevisiae, a member of(More)
In recent years, a number of mammalian zinc transporters have been identified, and candidate genes are rapidly growing. These transporters are classified into two families: ZIP (ZRT, IRT-like protein) and CDF (cation diffusion facilitator). ZIP members facilitate zinc influx into the cytosol, while CDF members facilitate its efflux from the cytosol.(More)
Iron deprivation of Saccharomyces cerevisiae induces transcription of genes required for high-affinity iron uptake. AFT1 mediates this transcriptional control. In this report, the 5'-flanking region of FET3, which encodes a copper-dependent oxidase required for iron transport, was analyzed and found to contain a DNA sequence responsible for AFT1-regulated(More)
Ferritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under(More)
Rad52 plays a pivotal role in double-strand break (DSB) repair and genetic recombination in Saccharomyces cerevisiae, where mutation of this gene leads to extreme X-ray sensitivity and defective recombination. Yeast Rad51 and Rad52 interact, as do their human homologues, which stimulates Rad51-mediated DNA strand exchange in vitro, suggesting that Rad51 and(More)