Learn More
During NMDA receptor-mediated long-term potentiation (LTP), synapses are strengthened by trafficking AMPA receptors to the synapse through a calcium-dependent kinase cascade following activation of NMDA receptors. This process results in a long-lasting increase in synaptic strength that is thought to be a cellular mechanism for learning and memory. Over the(More)
The cap-binding protein eIF4E is the first in a chain of translation initiation factors that recruit 40S ribosomal subunits to the 5' end of eukaryotic mRNA. During cap-dependent translation, this protein binds to the 5'-terminal m(7)Gppp cap of the mRNA, as well as to the adaptor protein eIF4G. The latter then interacts with small ribosomal subunit-bound(More)
The stability of all RNA polymerase II transcripts depends on the 5'-terminal cap structure. Removal of the cap is a prerequisite for 5' to 3'-decay and is catalyzed by distinct cellular and viral decapping activities. Over the past decade, several decapping enzymes have been characterized through functional and structural studies. An emerging theme is that(More)
Eukaryotic mRNA decapping by Dcp2 is the penultimate step in several mRNA decay pathways. To understand regulation of Dcp2 by ligand interactions, we have assigned the backbone and sidechain methyl Ile (delta1), Leu and Val chemical shifts of the catalytic domain of the S. Cerevisiae enzyme.
  • 1