Learn More
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is(More)
HM1.24/Bst2/CD317 is a protein highly expressed in multiple myeloma cells and has unique topology with two membrane anchor domains, an NH2-terminal transmembrane domain and a glycosylphosphatidylinositol attached to the COOH terminus. We show here that human HM1.24 is localized not only on the cell surface but also in the trans-Golgi network and/or(More)
Trypanosoma cruzi, the causative agent of Chagas' disease, exhibits two different developmental stages in mammals, the amastigote, an intracellular form that proliferates in the cytoplasm of host cells, and the trypomastigote, an extracellular form that circulates in the bloodstream. We have already established an in vitro culture system using mammalian(More)
Mitochondria play an essential role in oxidative phosphorylation, fatty acid oxidation, and the regulation of apoptosis. However, this organelle also produces reactive oxygen species (ROS) that continually inflict oxidative damage on mitochondrial DNA, proteins, and lipids, which causes further production of ROS. To oppose this oxidative stress,(More)
In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or(More)
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome(More)
Rab5 is a small GTPase that plays roles in the homotypic fusion of early endosomes and regulation of intracellular vesicle transport. We show here that expression of GFP-tagged GTPase-deficient form of Rab5b (Rab5bQ79L) in NRK cells results in the sequential formation of three morphologically and functionally distinct types of endosomes. Expression of(More)
In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used(More)
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation,(More)
Cationic amphiphilic drugs (CADs) cause massive intracellular accumulation of phospholipids, thereby resulting in phospholipidosis (PLD); however, the molecular mechanism underlying CAD-induced PLD remains to be resolved. Here, we found that treatment of normal rat kidney cells with CADs known to induce PLD caused redistribution of a mannose(More)