Learn More
The unfolded protein response (UPR) is a signal transduction pathway induced by a variety of endoplasmic reticulum (ER) stresses and functions to maintain homeostasis of the cellular membrane in eukaryotes. Various ER stresses result in the accumulation of unfolded proteins in the ER, which is sensed by the transmembrane protein kinase/ribonuclease Ire1p(More)
Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can(More)
Under conditions of endoplasmic reticulum (ER) stress, mammalian cells induce both translational repression and the unfolded protein response that transcriptionally activates genes encoding ER-resident molecular chaperones. To date, the only known pathway for translational repression in response to ER stress has been the phosphorylation of eIF-2alpha by the(More)
A major response of eukaryotic cells to the presence of unfolded proteins in the lumen of the endoplasmic reticulum (ER) is to activate genes that encode ER-located molecular chaperones, such as the binding protein. This response, called the unfolded protein response, requires the transduction of a signal from the ER to the nucleus. In yeast (Saccharomyces(More)
Upon endoplasmic reticulum (ER) stress, an endoribonuclease, inositol-requiring enzyme-1α, splices the precursor unspliced form of X-box-binding protein 1 messenger RNA (XBP1u mRNA) on the ER membrane to yield an active transcription factor (XBP1s), leading to the alleviation of the stress. The nascent peptide encoded by XBP1u mRNA drags the(More)
In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation(More)
Eukaryotic cells activate the unfolded-protein response (UPR) upon endoplasmic reticulum (ER) stress, where the stress is assumed to be the accumulation of unfolded proteins in the ER. Consistent with previous in vitro studies of the ER-luminal domain of the mutant UPR initiator Ire1, our study show its association with a model unfolded protein in yeast(More)
Specific cell ablation is a useful method for analyzing the in vivo function of cells. We have developed a simple and sensitive method for conditional cell ablation in transgenic mice, called "toxin receptor-mediated cell knockout." We expressed the diphtheria toxin (DT) receptor in transgenic mice using a hepatocyte-specific promoter and found that(More)
Endoplasmic reticulum (ER) stress triggers the cytoplasmic splicing of XBP1 mRNA by the transmembrane endoribonuclease IRE1alpha, resulting in activation of the unfolded protein response, which maintains ER homeostasis. We show that the unspliced XBP1 (XBP1u) mRNA is localized to the membrane, although its product is neither a secretory nor a membrane(More)
The unfolded protein response (UPR) is a cellular protective event against endoplasmic reticulum (ER) stress. In the yeast UPR signaling pathway, the ER-located transmembrane protein Ire1 promotes splicing of the HAC1 premRNA (HAC1(u)) to produce the translatable transcription factor mRNA (HAC1i). We generated a HAC1i gene-bearing strain, in which the UPR(More)