Yukinori Minoshima

Learn More
Cell division is finely controlled by various molecules including small G proteins and kinases/phosphatases. Among these, Aurora B, RhoA, and the GAP MgcRacGAP have been implicated in cytokinesis, but their underlying mechanisms of action have remained unclear. Here, we show that MgcRacGAP colocalizes with Aurora B and RhoA, but not Rac1/Cdc42, at the(More)
We identified CENP-50 as a novel kinetochore component. We found that CENP-50 is a constitutive component of the centromere that colocalizes with CENP-A and CENP-H throughout the cell cycle in vertebrate cells. To determine the precise role of CENP-50, we examined its role in centromere function by generating a loss-of-function mutant in the chicken DT40(More)
STAT transcription factors are tyrosine phosphorylated upon cytokine stimulation and enter the nucleus to activate target genes. We show that Rac1 and a GTPase-activating protein, MgcRacGAP, bind directly to p-STAT5A and are required to promote its nuclear translocation. Using permeabilized cells, we find that nuclear translocation of purified p-STAT5A is(More)
In addition to their pleiotropic functions under physiological conditions, transcription factors STAT3 and STAT5 also have oncogenic activities, but how activated STATs are transported to the nucleus has not been fully understood. Here we show that an MgcRacGAP mutant lacking its nuclear localizing signal (NLS) blocks nuclear translocation of p-STATs both(More)
We previously identified a guanosine triphosphatase (GTPase)-activating protein (GAP) male germ cell Rac GAP (MgcRacGAP) that enhanced interleukin-6 (IL-6)-induced macrophage differentiation of murine M1 leukemia cells. Later, MgcRacGAP was found to play crucial roles in cell division. However, how MgcRacGAP enhanced IL-6-induced differentiation remained(More)
  • 1