Yukimasa Takeda

Learn More
In this study, we demonstrate that the lack of retinoic acid-related orphan receptor (ROR) γ or α expression in mice significantly reduced the peak expression level of Cry1, Bmal1, E4bp4, Rev-Erbα and Per2 in an ROR isotype- and tissue-selective manner without affecting the phase of their rhythmic expression. Analysis of RORγ/RORα double knockout mice(More)
OBJECTIVE The nuclear receptor TAK1/TR4/NR2C2 is expressed in several tissues that are important in the control of energy homeostasis. In this study, we investigate whether TAK1 functions as a regulator of lipid and energy homeostasis and has a role in metabolic syndrome. RESEARCH DESIGN AND METHODS We generated TAK1-deficient (TAK1⁻(/)⁻) mice to study(More)
RORα and RORγ are expressed in human skin cells that produce the noncalcemic 20-hydroxyvitamin D3 [20(OH)D3] and 20,23-dihydroxyvitamin D3 [20,23(OH)2D3]. Chinese hamster ovary (CHO) cells stably expressing a Tet-on RORα or RORγ expression vector and a ROR-responsive element (RORE)-LUC reporter, and a mammalian 2-hybrid model examining the interaction(More)
In this study, we identify Prospero-related homeobox 1 (Prox1) as a novel co-repressor of the retinoic acid-related orphan receptors, RORα and RORγ. Prox1 interacts directly with RORγ and RORα and negatively regulates their transcriptional activity. The AF2 domain of RORs is essential for the interaction, whereas Prox1 interacts with RORs through either its(More)
Mitochondrial DNA(mtDNA) diversity was investigated in 257 clinical isolants of Sporothrix schenckii obtained from 4 districts in Japan. S. schenckii was classified into 10 types based on Hae III restriction profiles. Phylogeny of types constructed by the method of Fitch and Margoliash [1] on the estimated sequence divergence within mtDNA using the methods(More)
Transcriptional regulation of insulin in pancreatic β-cells is mediated primarily through enhancer elements located within the 5' upstream regulatory region of the preproinsulin gene. Recently, the Krüppel-like transcription factor, Gli-similar 3 (Glis3), was shown to bind the insulin (INS) promoter and positively influence insulin transcription. In this(More)
The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks.(More)
Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to(More)
Retinoid-related orphan receptor (ROR)α4 is the major RORα isoform expressed in adipose tissues and liver. In this study we demonstrate that RORα-deficient staggerer mice (RORα(sg/sg)) fed with a high-fat diet (HFD) exhibited reduced adiposity and hepatic triglyceride levels compared with wild-type (WT) littermates and were resistant to the development of(More)
The Krüppel-like zinc finger transcription factor, Glis3, has been associated with neonatal diabetes in humans and mice, and implicated in the regulation of pancreatic β-cell generation. However, its precise function in the development of pancreatic β-cells has not yet been elucidated. In this study, we provide evidence that Glis3 regulates Neurogenin 3(More)