Learn More
In diabetic nerves, the activation of the polyol pathway and a resulting decrease in Na(+)-K(+) ATPase activity lead to intra-axonal Na(+) accumulation and a smaller Na(+) gradient across the axolemma than normal. To investigate whether glycemic control is associated with acutely reversible changes in axonal excitability and Na(+) conductance, we measured(More)
OBJECTIVE To investigate the effects of hyperglycemia on axonal excitability in human diabetics. Diabetic nerve dysfunction is partly associated with the altered polyol pathway and Na+-K+ ATPase activity, probably resulting in a decrease in the trans-axonal Na+ gradient and reduced nodal Na+ currents. METHODS Threshold tracking was used to measure the(More)
OBJECTIVE To investigate the influences of hyperglycemia on axonal excitability in human diabetic nerves. Hyperglycemia results in decreased Na+-K+ pump function, presumably leading to intra-axonal Na+ accumulation and thereby, reduced Na+ currents. METHODS The strength-duration time constant (tau(SD)), which partly depends on persistent Na+ conductance(More)
Guillain-Barré syndrome is divided into acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN) based on motor nerve conduction studies. We investigated whether sensory nerve conduction studies contribute to the electrodiagnosis of AIDP and AMAN. In consecutive 59 patients with AIDP (n = 26) or AMAN (n = 33), results(More)
OBJECTIVE To investigate acute changes in nerve conduction associated with glycemic control. In diabetes, nerve dysfunction can result from reversible metabolic factors associated with hyperglycemia, as well as structural changes. METHODS Multiple nerve conduction parameters including F-wave latencies were measured in 47 diabetic patients with prominent(More)
Threshold tracking was used to measure excitability indices (strength-duration properties, threshold electrotonus, and the current-threshold relationship) at the motor point of the abductor pollicis brevis, and the results were compared with those of the median nerve at the wrist. Using an accelerometer placed at the thumb tip, movement-related potentials(More)
This article presents a microscopic MR technique for imaging small mammalian fetuses in utero and in vivo which can be used as a tool for studying normal and abnormal development in small animal fetal models, for targeting in utero intervention in such models, and for following development serially. This new method is applied to a rat model of congenital(More)
  • 1