Yukiko Hirabayashi

Learn More
We have developed a wavelet-based method of detecting body-movement artifacts in optical topography (OT) signals. Although OT, which is a noninvasive imaging technique for measuring hemodynamic response related to brain activation, is particularly useful for studying infants, the signals occasionally contain undesirable artifacts caused by body movements,(More)
Considerable knowledge on neural development related to speech perception has been obtained by functional imaging studies using near-infrared spectroscopy (optical topography). In particular, a pioneering study showed stronger left-dominant activation in the temporal lobe for (normal) forward speech (FW) than for (reversed) backward speech (BW) in neonates.(More)
Optical topography/functional near-infrared spectroscopy (OT/fNIRS) is a functional imaging technique that noninvasively measures cerebral hemoglobin concentration changes caused by neural activities. The fNIRS method has been extensively implemented to understand the brain activity in many applications, such as neurodisorder diagnosis and treatment,(More)
We have developed an effective technique for aiding the design and evaluating the performance of the probe caps used to perform optical topography (OT) on infants. To design and evaluate a probe cap, it is necessary to determine the measurement positions for conducting OT on the brain surface of subjects. One technique for determining these positions on the(More)
  • 1