Learn More
Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here(More)
Lignins are complex phenylpropanoid polymers mostly associated with plant secondary cell walls. Lignins arise primarily via oxidative polymerization of the three monolignols, p-coumaryl, coniferyl, and sinapyl alcohols. Of the two hydroxycinnamyl alcohols that represent incompletely methylated biosynthetic products (and are not usually considered to be(More)
Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall(More)
Suppression of the lignin-related gene cinnamoyl-CoA reductase (CCR) in the Pinus radiata tracheary element (TE) system impacted both the metabolite profile and the cell wall matrix in CCR-RNAi lines. UPLC–MS/MS-based metabolite profiling identified elevated levels of p-coumaroyl hexose, caffeic acid hexoside and ferulic acid hexoside in CCR-RNAi lines,(More)
BACKGROUND Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study,(More)
Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one(More)
This project aims to maximize the utility of plant lignocellulosic biomass as an abundant, sustainable, and carbon-neutral energy feedstock by optimizing both its yield and composition to facilitate downstream conversions to fuel and electricity. Working independently with different lignin-deficient mutants, the partners have discovered novel genes that(More)
  • 1