Learn More
Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here(More)
Lignins are complex phenylpropanoid polymers mostly associated with plant secondary cell walls. Lignins arise primarily via oxidative polymerization of the three monolignols, p-coumaryl, coniferyl, and sinapyl alcohols. Of the two hydroxycinnamyl alcohols that represent incompletely methylated biosynthetic products (and are not usually considered to be(More)
Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of(More)
Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change(More)
A cDNA clone encoding the lignin-related enzyme caffeoyl CoA 3-O-methyltransferase (CCoAOMT) was isolated from a Pinus radiata cDNA library derived from differentiating xylem. Suppression of PrCCoAOMT expression in P. radiata tracheary element cultures affected lignin content and composition, resulting in a lignin polymer containing p-hydroxyphenyl (H),(More)
Suppression of the lignin-related gene cinnamoyl-CoA reductase (CCR) in the Pinus radiata tracheary element (TE) system impacted both the metabolite profile and the cell wall matrix in CCR-RNAi lines. UPLC–MS/MS-based metabolite profiling identified elevated levels of p-coumaroyl hexose, caffeic acid hexoside and ferulic acid hexoside in CCR-RNAi lines,(More)
There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion(More)
The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed(More)
Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall(More)
We have recently described a hitherto unsuspected catechyl lignin polymer (C-lignin) in the seed coats of Vanilla orchid and in cacti of one genus, Melocactus (Chen et al., Proc. Natl. Acad. Sci. USA. 2012, 109, 1772-1777.). We have now determined the lignin types in the seed coats of 130 different cactus species. Lignin in the vegetative tissues of cacti(More)